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Abstract. Tests for identification through heteroskedasticity in structural

vector autoregressive analysis are developed for models with two volatility

states where the time point of volatility change is known. The tests are

Wald type tests for which only the unrestricted model including the covari-

ance matrices of the two volatility states have to be estimated. The residuals

of the model are assumed to be from the class of elliptical distributions

which includes Gaussian models. The asymptotic null distributions of the

test statistics are derived and simulations are used to explore their small

sample properties. Two empirical examples illustrate the usefulness of the

tests in applied work.

Key Words: Heteroskedasticity, structural identification, vector autoregres-

sive process
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1 Introduction

Identification by heteroskedasticity of the shocks has become a standard

tool in structural vector autoregressive (VAR) analysis (see, e.g., Kilian and

Lütkepohl (2017, Chapter 14)). Heteroskedasticity can complement identify-

ing restrictions based on economic theory or subject matter knowledge. The

underlying idea is that if the variance of the structural shocks changes during

the sample period and there is heterogeneity in the variance changes of differ-

ent shocks, this feature can be used to distinguish (identify) the shocks. The

objective of this study is to present a formal statistical test for the required

variance heterogeneity and hence the identification of the shocks.

Of course, identifying structural shocks purely through their statistical

properties implies that a further step is necessary to associate the identified

shocks with economic shocks of interest. Therefore identification through

heteroskedasticity is often complemented by conventional identifying restric-

tions, for example, on the impact effects of the shocks. In particular, if

competing identifying restrictions are available, which are just-identifying in

a conventional setting, identifying information from heteroskedasticity can

be used as over-identifying restrictions which opens up the possibility to for-

mally test identifying restrictions that are otherwise not testable. Such tests

are not considered in this paper but are discussed, for example, in Lanne

and Lütkepohl (2008), Netšunajev (2013) and Lütkepohl and Netšunajev

(2017a).

A main advantage of identification via heteroskedasticity is that the data

are in principle informative on the conditions for identification. Thus, iden-

tification can be investigated by statistical tests. The problem in developing

such tests is that the model is typically not identified under the null hy-

pothesis of no identification which complicates the derivation of the asymp-

totic distributions of standard tests. Some authors still use standard Wald

and likelihood ratio (LR) tests for identification through heteroskedasticity

and approximate the distribution under the null hypothesis by the usual

χ2 distributions. Examples are Lanne, Lütkepohl and Maciejowska (2010),

Herwartz and Lütkepohl (2014), Lütkepohl and Velinov (2016), Velinov and
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Chen (2015), Netšunajev (2013) and Lütkepohl and Netšunajev (2014). How-

ever, so far the asymptotic distributions of these tests have not been derived

formally and it is unlikely that the assumed χ2 distributions provide precise

approximations to the true asymptotic distributions of the test statistics.

Alternatively, some authors have proposed Bayesian methods for assessing

identification in this context (e.g., Woźniak and Droumaguet (2015) and

Lütkepohl and Woźniak (2017)).

In the following we will develop formal frequentist tests that can help

in assessing identification through heteroskedasticity for the special case

of stable VAR models with two volatility regimes of the residuals. Such

simple models for the change in volatility have been considered, e.g., by

Rigobon (2003), Lanne and Lütkepohl (2008, 2014), and Lütkepohl and

Schlaak (2018).2 For developing our tests, we assume that the distribution of

the residuals is elliptically symmetric which covers the case of Gaussian VAR

processes but also models where the residuals have t distributions or mixtures

of normal distributions. We develop Wald type tests for which we can derive

the asymptotic distribution under the null hypothesis of no identification.

Our results shed further doubts on the previously assumed test distributions

for related statistics. Of course, if the test indicates identification through

heteroskedasticity, the identifying information may still be limited. In other

words, there may still be weak identification. This issue in the context of

identification through heteroskedasticity has been discussed by Lewis (2018)

and more general results on weak identification are given by Andrews (2018).

Such procedures may be used in addition or alternatively to our approach.

Our tests may only indicate that there is some identifying information

through heteroskedasticity but may not suggest that the structural model is

fully identified. We discuss a sequential testing procedure that can be helpful

in this context. Our tests can be used at different stages of such a proce-

dure. Then the properties of the full sequential procedure may be of interest

2The actual models used for empirical analysis are more sophisticated in some of these

articles, where more volatility states and alternative volatility models are considered as

well. We focus on the simpler case to make the problem tractable and leave more general

models for future research.
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which we do not consider theoretically. However, we show by simulation that

the asymptotic theory is a good guide for small sample performance of the

individual tests, if the sample size is sufficiently large and we also explore

the properties of the sequential procedure by simulation. Finally, we present

examples which illustrate the usefulness of our tests for applied work.

The remainder of this study is structured as follows. The model is set up

in the following section. Section 3 presents the tests for identification and

their asymptotic properties. Section 4 considers the small sample properties

of the tests. Two empirical examples based on US data are discussed in

Section 5. The final section concludes. The proofs of the asymptotic results

for the test statistics are provided in Appendix A.

2 The Model

Consider a stable, stationary K-dimensional reduced-form VAR(p) model

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where ν is an intercept term and Aj (j = 1, . . . , p) are (K ×K) VAR slope

coefficient matrices satisfying the usual stability condition

det (IK − A1z − · · · − Apzp) 6= 0 for |z| ≤ 1. (2)

The error process ut is white noise with zero mean, E(ut) = 0, and (positive

definite) covariance matrices

E(utu
′
t) =

Σ1 for t ∈ T1 = {1, . . . , T1},

Σ2 for t ∈ T2 = {T1 + 1, . . . , T},
(3)

where T signifies the sample size. Thus, the errors of the model are assumed

to be heteroskedastic so that the covariance matrix changes from Σ1 to Σ2

at time T1 + 1 which we assume to be known. Moreover, we assume that for

some fixed fraction τ ∈ (0, 1), T1 is the integer part of τT , i.e., T1 = [τT ], so

that the sample size for both volatility regimes goes to infinity as T →∞.

The setup in (3) is used here for convenience. For our asymptotic analysis

it is in fact sufficient that T1 contains a fraction of τ sample periods while
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T2 contains the remaining fraction of 1 − τ periods in the sample. In other

words, T1 and T2 do not have to contain consecutive parts of the sample.

The important condition is that the size of both sets goes to infinity with the

sample size in such a way that both Σ1 and Σ2 can be estimated consistently.

We consider the case where the error term ut has an elliptically symmetric

distribution or briefly an elliptical distribution possessing a density

1√
det Σt

g(u′tΣ
−1
t ut),

where Σt is a symmetric positive definite matrix, g(·) is a positive function

such that the density integrates to one and the fourth moments of the dis-

tribution exist (see, e.g., Anderson (2003, Section 2.7) for further discussion

of elliptical distributions). Note that the elliptical distributions are such

that all components of ut have the same kurtosis parameter. More precisely,

denoting the ith diagonal element of Σt by σ2
it, the kurtosis parameter

E(u4it)

3σ2
it

− 1

is the same for i = 1, . . . , K (see also Anderson (2003, p. 54, Equation

(36))). We explicitly allow for the possibility that the kurtosis parameter

may be different for the different volatility regimes and define

E(u4it)

3σ2
it

− 1 =

κ1 for t ∈ T1,

κ2 for t ∈ T2.

Notice, however, that the case of Gaussian residuals is obtained as a special

case by choosing the kurtosis parameter equal to zero. Thus, even if the

variance changes across the sample, we may have κ1 = κ2, e.g., if the sample

is Gaussian. Other distribution families covered by our assumptions are

t distributions and mixtures of normal distributions. We need the elliptical

distributions to apply limiting results from Anderson (2003) in our derivation

of the test for identification in Section 3.

The covariance matrices in (3) can be decomposed as follows:

Σ1 = BB′, Σ2 = BΛB′, (4)
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where Λ = diag(λ1, . . . , λK) is a (K × K) diagonal matrix with positive

diagonal elements and B is a nonsingular (K × K) matrix (see Lütkepohl

(2013)). A standard assumption in the related structural VAR (SVAR) liter-

ature is that only the volatility of the shocks changes while the responses of

the variables remain time invariant. This is accomplished by obtaining the

structural shocks from the reduced form errors as εt = B−1ut, such that B

is the matrix of impact effects of the shocks and the covariance matrices of

the structural errors are given by

E(εtε
′
t) =

IK for t ∈ T1,

Λ for t ∈ T2.
(5)

Thus, the structural errors are instantaneously uncorrelated in both volatility

regimes. Replacing the reduced form errors ut in (1) by the structural errors

Bεt yields the SVAR(p) model

yt = ν + A1yt−1 + · · ·+ Apyt−p +Bεt. (6)

For the statistical results to be obtained later we assume that the structural

errors εt or, equivalently, the reduced-form errors ut are temporally indepen-

dent.

It is well known (see, e.g., Theorem A9.9 and its proof in Muirhead (1982))

that the diagonal elements of the matrix Λ in (4) are the eigenvalues of the

matrix Σ−11 Σ2 so that they satisfy the (generalized) eigenvalue equations

det (Σ2 − λiΣ1) = 0, i = 1, . . . , K, (7)

whereas the columns of the matrix B = [b1 : · · · : bK ] are the corresponding

(generalized) eigenvectors that satisfy

(Σ2 − λiΣ1) bi = 0, i = 1, . . . , K. (8)

Furthermore, if the eigenvalues λ1, . . . , λK are distinct, the matrixB is unique

apart from permutations and sign reversals of its columns (see the aforemen-

tioned theorem of Muirhead (1982) or Lanne et al. (2010, Proposition 1)).

In what follows we assume (without loss of generality) that the eigenvalues
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λ1, . . . , λK are ordered from largest to smallest so that λ1 ≥ · · · ≥ λK > 0

holds. If the matrix B is not unique we have an identification problem in the

SVAR(p) model (6). Testing for a possible lack of identification is therefore

of interest and will be discussed in the next section.

Clearly, our model is special in that it assumes two volatility regimes

only. In practice, there may be more than two volatility regimes (see, e.g.,

Rigobon and Sack (2003), Lanne and Lütkepohl (2008)). In that case the

identification conditions become more elaborate and more difficult to test

formally (e.g., Kilian and Lütkepohl (2017, Section 14.3.1)). We leave this

case for future research. Moreover, more general volatility models have been

considered in the literature. For example, Lanne et al. (2010) and Herwartz

and Lütkepohl (2014) use a Markov switching process to model endogenously

changing volatility regimes. Unfortunately, we do not know whether the tests

developed in the following can be extended to that case even in situations

where very similar identification conditions are of interest. Again we have to

leave extensions to such models for future research.

3 A Test Procedure for Identification of B

3.1 The Testing Problem

Given that the diagonal elements of the matrix Λ are ordered from largest to

smallest, uniqueness of the matrix B obtains if λ1 > · · · > λK and the possi-

bility of sign reversals in B is eliminated. One possibility to fix the column

signs to be used in this study, is to require that the first nonzero element of

each column of B is positive. In order to test for lack of identification we

consider the pair of hypotheses

H0 : λs+1 = λs+2 = · · · = λs+r (= λ0) versus H1 : ¬H0 (9)

for s ∈ {0, . . . , K − 2} and r ∈ {2, . . . , K − s}. Thus, under the null hy-

pothesis, r consecutive eigenvalues of Λ are equal to a value λ0, implying

lack of identification. The remaining eigenvalues λ1, . . . , λs, λs+r+1, . . . , λK ,
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may have multiplicities larger than one, but have to be different from λ0, the

common value under H0.

Let y−p+1, . . . , y0, y1, . . . , yT be the available data. The reduced-form

Gaussian log-likelihood function (apart from a constant and conditioning

on the first p observations y−p+1, . . . , y0) is given by

l(ϑ,σ) = −1

2

T1∑
t=1

log det(Σ1)−
1

2

T1∑
t=1

ut(ϑ)′Σ−11 ut(ϑ) (10)

−1

2

T∑
t=T1+1

log det(Σ2)−
1

2

T∑
t=T1+1

ut(ϑ)′Σ−12 ut(ϑ),

where ϑ = vec(ν,A1, . . . , Ap), ut(ϑ) signifies ut in expression (1) when these

quantities are interpreted as functions of the underlying parameters and

σ = (σ1,σ2) with σi = vech(Σi) (i = 1, 2). Here vec denotes the usual

column stacking operator and vech denotes the operator which stacks the

columns of a square matrix from the main diagonal downwards. If the DGP

is Gaussian, maximizing l(ϑ,σ) with respect to the parameters gives the

maximum likelihood (ML) estimators and, if the true distribution is not

Gaussian but of a more general elliptical form, the resulting estimators are

quasi-ML estimators.

Instead of ML estimation one may use a feasible generalized least squares

(GLS) procedure. In that case (1) is estimated with equationwise ordinary

least squares (OLS) in a first step. The residuals ût obtained in that way are

then used for estimating the covariance matrices as

Σ̂i =
1

Ti

∑
t∈Ti

ûtû
′
t, i = 1, 2,

where T2 = T − T1. In a further step the GLS estimator

ϑ̃ =

(
T∑
t=1

Zt−1Z
′
t−1 ⊗ Σ̂−1t

)−1( T∑
t=1

(Zt−1 ⊗ Σ̂−1t )yt

)
, (11)

is computed, where Zt−1 = (1, y′t−1, . . . , y
′
t−p)

′ and Σ̂t = Σ̂i for t ∈ Ti (i =

1, 2). If the VAR process is stable, these estimators have standard asymptotic

properties and can be used accordingly (see Lütkepohl (2005, Chapter 17)).

Then the GLS residuals can be used to estimate the covariance matrices Σ1
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and Σ2. In what follows, ϑ̃ can be any estimator of ϑ such that ϑ̃ − ϑ =

Op(T
−1/2).

Then one readily finds that Σ̃1 and Σ̃2 are asymptotically equivalent to

their (unfeasible) counterparts based on the reduced form errors or, specifi-

cally,

Σ̃1 =
1

T1

T1∑
t=1

ũtũ
′
t =

1

T1

T1∑
t=1

utu
′
t + op(T

−1/2) (12)

Σ̃2 =
1

T − T1

T∑
t=T1+1

ũtũ
′
t =

1

T − T1

T∑
t=T1+1

utu
′
t + op(T

−1/2), (13)

where ũt signifies the residuals described above, i.e., ũt = yt−ν̃−Ã1yt−1−· · ·−
Ãpyt−p (cf. Proposition 3.2 in Lütkepohl (2005)). Replacing the theoretical

covariance matrices Σ1 and Σ2 in equations (7) and (8) by the estimators Σ̃1

and Σ̃2 we obtain the vector of eigenvalues λ̃ = (λ̃1, . . . , λ̃K) and the matrix

of eigenvectors B̃ = [ b̃1 : · · · : b̃K ]. Similarly to their theoretical counterparts,

the estimated eigenvalues λ̃1, . . . , λ̃K are ordered from largest to smallest and,

as they are distinct with probability one, we have λ̃1 > · · · > λ̃K > 0 almost

surely. Eliminating the possibility of sign reversals in B̃ in the same way as

in B we therefore have a one-to-one continuous correspondence between the

estimators Σ̃1 and Σ̃2 and the elements of the matrix B̃ and the vector λ̃.

Thus, B̃ and λ̃ can be viewed as unrestricted estimators of B and λ.

Deriving the asymptotic properties of estimated eigenvalues is known to

be a complicated problem when the theoretical eigenvalues are not distinct

which is the case under our null hypothesis. In the context of principal

component analysis, where the population eigenvalues satisfy equation (7)

with Σ1 = IK , and with independent observations a complete solution to

this problem is provided by Anderson (1963) (see also Anderson (2003, Sec.

11.7.3), and Muirhead (1982, Sec. 9.5 and 9.6)), whereas Anderson (2003,

Sec. 13.6.3) treats the case of a general Σ1 (again with independent obser-

vations). In what follows we adopt Anderson’s approach to our problem.

For setting up our test statistics, we also need consistent estimates of the

kurtosis parameters. One possible estimator is discussed in Schott (2001, p.
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33),

κ̃m =
1

3K

K∑
k=1

zmk
wmk
− 1, m = 1, 2, (14)

where

zmk =

∑
t∈Tm(ũkt − ūmk )4 − 6σ̃4

k

Tm − 4

and

wmk =
Tm

Tm − 1

(
σ̃4
k −

zmk
Tm

)
.

Here ūmk = T−1m

∑
t∈Tm ũkt is the mean of the residuals associated with the

mth volatility regime. Of course, if the ut are Gaussian and this fact is known

to the analyst, the kurtosis parameters can simply be replaced by zero, i.e.,

κ̃1 = κ̃2 = 0 in the test statistic. Similarly, if the distribution is such that

κ1 = κ2 the kurtosis parameter can be estimated from the full sample using

the formulas as above based on the full sample.

3.2 The Test Statistic

We base our test statistic on the eigenvalues λ̃s+1, . . . , λ̃s+r. In principal com-

ponent analysis with Gaussian iid data, the LR test for testing the equality

of eigenvalues is based on the ratio of the geometric mean and arithmetic

mean of the ML estimators of the eigenvalues assumed to be identical under

the null hypothesis (see Anderson (1963) or Anderson (2003, Sec. 11.7.3)).

Proceeding according to this pattern, we consider the test statistic

Qr(κ̃1, κ̃2) = −c(τ, κ̃1, κ̃2)2Tr log

(∏s+r
k=s+1 λ̃

1/r
k

1
r

∑s+r
k=s+1 λ̃k

)
(15)

= c(τ, κ̃1, κ̃2)
2

[
−T

s+r∑
k=s+1

log(λ̃k) + Tr log

(
1

r

s+r∑
k=s+1

λ̃k

)]
,

where κ̃1 and κ̃2 are consistent estimators of the kurtosis parameters and the

term

c(τ, κ̃1, κ̃2)
2 =

(
1 + κ̃1
τ

+
1 + κ̃2
1− τ

)−1
11



is included to obtain a convenient limiting distribution. Since the test statis-

tic involves unrestricted estimators only, the test is akin to a Wald test.

Of course, other distance measures could also be considered. The following

proposition gives the asymptotic distribution of the test statistic under the

null hypothesis. It is proven in Appendix A.

Proposition 1. Let ut have an elliptical distribution possessing a density

as well as finite fourth moments with kurtosis parameters κi for t ∈ Ti (i =

1, 2), where T1 = {1, . . . , T1 = [τT ]}, T2 = {T1 + 1, . . . , T} and the fraction

τ ∈ (0, 1) is assumed to be known and fixed. Furthermore, let λ1 ≥ · · · ≥ λK

be ordered from largest to smallest and let Qr(κ̃1, κ̃2) be the test statistic

defined in equation (15) for testing the pair of hypotheses

H0 : λs+1 = λs+2 = · · · = λs+r(= λ0) versus H1 : ¬H0

for s ∈ {0, . . . , K − 1} and r ∈ {2, . . . , K − s}. Suppose that λs 6= λs+1 and

λs+r 6= λs+r+1. Furthermore, let κ̃1 and κ̃2 be consistent estimators of κ1 and

κ2, respectively. Then

Qr(κ̃1, κ̃2)
d→ χ2(1

2
(r + 2)(r − 1)),

where
d→ denotes convergence in distribution. �

The χ2 limiting distribution requires that r eigenvalues are equal to λ0 and

all other eigenvalues are different from λ0, i.e., λs 6= λs+1 and λs+r 6= λs+r+1.

In order to ensure this condition, the following considerations may be helpful.

If

H0 : λ1 = · · · = λK

does not hold, we know that λ1 6= λK and Proposition 1 enables us to test

H0 : λ1 = · · · = λK−1, H0 : λ2 = · · · = λK .

If these two null hypotheses are false, we can test all null hypotheses involving

K−2 consecutive eigenvalues etc.. If all null hypotheses in this sequence are
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false, we can finally test

H0 : λ1 = λ2, . . . ,H0 : λK−1 = λK .

If all the null hypotheses are rejected, the tests support that all the structural

parameters are identified via heteroskedasticity.

For example, for K = 3, Proposition 1 implies that we can test the null

hypothesis

H0 : λ1 = λ2 = λ3

using Q3(κ̃1, κ̃2) with a χ2(5) distribution. If the null hypothesis is false, it

follows that λ1 6= λ3 so that we can test

H0 : λ1 = λ2 and H0 : λ2 = λ3

using Q2(κ̃1, κ̃2) statistics with a χ2(2) distribution. Rejecting the latter

two null hypotheses is evidence of a fully identified structural model via

heteroskedasticity.

In the previous literature a related Wald test for equality of two eigen-

values of a similar type is sometimes used with a χ2(1) distribution (e.g.,

Lanne et al. (2010), Velinov and Chen (2015)). Although somewhat differ-

ent volatility models are used in these publications, Proposition 1 suggests

that the χ2(1) distribution is a poor approximation to the actual asymptotic

distributions of the test statistics. An adjustment of the degrees-of-freedom

(df) parameter is likely to be useful. Note that increasing the df parameter

increases the correspondingly assumed p-values and, hence, may reduce the

number of rejections.

4 Small Sample Properties of Tests for Iden-

tification

4.1 Experimental Design

We consider a range of DGPs to investigate the small sample properties of

our tests. All DGPs have zero intercept, ν = 0. We still fit VARs with
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intercept. The error distributions are either Gaussian, ut ∼ N (0,Σt), or

have t distributions with 5 degrees of freedom (t(5) distributions). Some

of the simulation results are just summarized in the following and numbers

are provided in the Supplement for this article, where also further details of

some of the DGPs are presented. We report results for the following specific

DGPs.

DGP1 Bivariate (K = 2) VAR(0) process yt = ut, with volatility change at

T1 = τT , where 0 < τ < 1. The errors ut are Gaussian or have t(5)

distributions with covariance matrix Σ1 = I2 for t = 1, . . . , T1 = τT

and Σ2 = diag(λ1, λ2) for t > T1, where (λ1, λ2) = (2, 2), (2, 1). The

t(5) distributed ut are temporally independent and are generated as
√
λi × t(5) distributions for t > T1 and i = 1, 2.

DGP2 Gaussian bivariate VAR(2) process

yt =

 0.190

0.523

+

 −0.036 −0.705

−0.093 1.211

 yt−1+

 0.090 0.796

−0.085 −0.276

 yt−2+ut,

where the slope coefficients are the estimated values for the first exam-

ple process considered in Section 5.1. The error process is Gaussian,

ut ∼ N (0,Σt) and τ = 0.3 which also corresponds to the empirical

value for the example process. The covariance matrices are formed as

in equation (4) with

B =

 0.317 1.059

0.242 −0.450


and Λ = diag(λ1, λ2) with (λ1, λ2) = (0.5, 0.5), (0.5, 0.1). The latter

choice is also inspired by the example process. Thus, DGP2 has features

similar to the first example process.

Estimation of the VAR slope coefficients is done by GLS and then the λi

are obtained as generalized eigenvalues using (7) with estimated covariance

matrices Σ̃1 = T−11

∑T1
t=1 ũtũ

′
t and Σ̃2 = (T − T1)

−1∑T
t=T1+1 ũtũ

′
t, where ũt

are the GLS residuals. Even for the Gaussian processes we pretend that we

14



Table 1: Relative Rejection Frequencies of Tests for Gaussian DGP1 (Nom-
inal Significance Level 5%)

Assumed τ τ = 0.5 (true value) τ = 0.4 τ = 0.3
(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)
(2, 2) 100 0.054 0.063 0.064 0.072 0.056 0.062
(size) 250 0.045 0.046 0.046 0.050 0.057 0.055

500 0.046 0.050 0.057 0.053 0.049 0.050
(2, 1) 100 0.331 0.342 0.258 0.262 0.174 0.190

(power) 250 0.703 0.709 0.549 0.557 0.348 0.348
500 0.949 0.950 0.846 0.844 0.716 0.720

Note: DGP1 is a bivariate Gaussian VAR(0) process with τ = 0.5, ut ∼ N (0, I2)

for t = 1, . . . , τT and ut ∼ N (0,diag(λ1, λ2)) for t = τT + 1, . . . , T .

do not know the true distribution and fit models with possibly two distinct

kurtosis parameters. We also vary the sample size because it is expected to

affect the properties of the tests. Specifically, T = 100, 250, 500 are used.

The number of replications of all simulation experiments is 1000.

4.2 Simulation Results

The results for the bivariate DGP1 and DGP2 are discussed first. They are

presented in Tables 1 - 3 and are also complemented by further results in

the Supplement. Moreover, additional results for other processes are briefly

summarized in Section 4.2.2.

4.2.1 Bivariate DGPs

In Table 1 we report results for a Gaussian DGP1 not only for the case

where the change point of the volatility is specified correctly (τ = 0.5) but

also consider the situation of a misspecified volatility change point. In the

panel for (λ1, λ2) = (2, 2) in Table 1, it can be seen that the relative rejection

frequencies of the tests in finite samples are roughly in line with the nominal

size of 5%. Even for sample size T = 100 the relative rejection frequencies

are reasonably close to 5%, regardless of the kurtosis parameters used. In

other words, Q2(κ̃1, κ̃2) has very similar rejection frequencies as Q2(0, 0) for a

Gaussian process. Furthermore, the relative rejection frequencies under the
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Table 2: Relative Rejection Frequencies of Tests for DGP1 with Different
Distributions (Nominal Significance Level 5%)

Gaussian DGP t-distributed DGP
(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)
(2, 2) 100 0.054 0.063 0.173 0.047
(size) 250 0.045 0.046 0.187 0.048

500 0.046 0.050 0.214 0.048
(2, 1) 100 0.331 0.342 0.400 0.195

(power) 250 0.703 0.709 0.618 0.391
500 0.949 0.950 0.802 0.598

Note: The underlying DGPs are a VAR(0) process with Gaussian and t distributed

errors, respectively.

null hypothesis are not much affected by misspecifying the volatility change

point (see the last four columns in Table 1).

In this respect, the situation is quite different for the power of the tests.

In the lower part of Table 1, it is seen that the tests do have considerable

power even for T = 100 if τ is specified correctly (τ = 0.5). However, the

power declines when the volatility change point is misspecified (see again

the last four columns in Table 1). In fact, the farther away the assumed

change point is from the true change point, the lower the power. It is again

worth noting that it does not seem to matter much for the power of the tests

whether the true kurtosis parameters are known or estimated (compare the

corresponding results for Q2(κ̃1, κ̃2) and Q2(0, 0) in Table 1).

To explore the impact of misspecifying the kurtosis parameters we have

also simulated DGP1 with t distributed errors ut and compare the results in

Table 2 to results for Gaussian errors. Clearly, if the errors are t distributed

and the kurtosis parameters are mistakenly set to zero as for Gaussian pro-

cesses, the corresponding test statistic Q2(0, 0) is considerably oversized even

in large samples. For example, for T = 500 the relative rejection frequency is

0.214 for Q2(0, 0) in Table 2 instead of the desired 5% if the null hypothesis

is true ((λ1, λ2) = (2, 2)). In contrast, the relative rejection frequencies of

Q2(κ̃1, κ̃2) are very close to 5% if the null hypothesis is true, regardless of

the error distribution. This outcome suggests that it is advisable to use the

test statistics with estimated kurtosis parameters if, as usual in practice, the
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Table 3: Relative Rejection Frequencies of Tests for DGP2 (Nominal Signif-
icance Level 5%)

VAR(2) VAR(1)
(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)

(0.5, 0.5) 100 0.076 0.100 0.059 0.065
(size) 250 0.064 0.062 0.043 0.046

500 0.065 0.066 0.039 0.041
(0.5, 0.1) 100 0.330 0.360 0.255 0.272
(power) 250 0.644 0.650 0.561 0.570

500 0.910 0.909 0.869 0.866
(0.5, 0.1) 100 0.253 0.243 0.234 0.194

(size-adjusted power) 250 0.613 0.622 0.584 0.580
500 0.904 0.892 0.876 0.879

Note: DGP2 is a bivariate Gaussian VAR(2) process with τ = 0.3.

true distribution is unknown. Nothing much can be gained from using the

true kurtosis parameters if the distribution is known to be Gaussian.

So far we have only considered the situation where the true DGP is white

noise (VAR(0)). From a practical point of view this situation is not of much

interest, of course, and in Table 3 we present results for DGP2 which is a

Gaussian VAR(2) process based on a real life dataset. The table presents the

relative rejection frequencies for the situation that the VAR order is correctly

specified to be p = 2 and also for the case where VAR(1) processes are fitted

and, hence, the order is underspecified. Obviously, this situation may occur

in practice and is therefore of interest here.

For the case of a correctly specified VAR lag order, the tests are slightly

oversized in small samples due to the larger dimensional parameter space. For

example, for T = 100 and (λ1, λ2) = (0.5, 0.5) the test based onQ2(κ̃1, κ̃2) has

a relative rejection frequency of 0.100 in Table 3 which is double the nominal

significance level of 0.05. We have also fitted VAR(4) processes to DGP1

and present the results in Tables S1 an S2 of the Supplement, where it can

be seen that the tests are oversized for larger models with more parameters

if the sample size is small (T = 100). As in Table 3, the relative rejection

frequencies are much closer to 5% for the larger sample sizes, however.

Comparing to the corresponding results in Table 1, it can also be seen in

Table 3 that the size-adjusted power declines for larger models. In Table 3
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the unadjusted power of the test based on Q2(κ̃1, κ̃2) is 0.360 for the VAR(2)

and T = 100, which is similar to the power of the test for the corresponding

case in Table 1 for a VAR(0). However, if we account for the fact that the test

is oversized in Table 3 for the VAR(2) and compute the size-adjusted power,

the relative rejection frequency is only 0.243. Thus, the results in Table 3

clearly show that the tests are oversized and the actual power of the tests is

reduced for larger models in small samples when T = 100. Fortunately, the

small sample distortions in size and power largely disappear for the larger

sample sizes (T = 250 and 500).

If we now consider the results for the misspecified VAR(1) process in

Table 3, it turns out that in this situation the tests can even be somewhat

too conservative with relative rejection frequencies below the nominal 5% for

larger samples. Also the size-adjusted power may be distorted and tends to

be lower than for the correctly specified VAR(2) process.

In summary, based on our specific bivariate DGPs it appears that the

number of lags and, hence, the size of the model affects the rejection frequen-

cies. Larger models result in oversized tests in small samples with reduced

actual power. Size and power distortions appear in small samples if the VAR

order is under specified. If instead the volatility change point is misspecified,

the size of the tests is not much affected but the power is reduced. If the

true distribution of the DGP is not known to be Gaussian, then it always

makes sense to use the test statistics based on estimated kurtosis parameters

because they display very similar rejection frequencies in the Gaussian case

to the test statistics based on known kurtosis parameters and their empirical

size is much closer to the nominal size if the true distribution is non-Gaussian.

4.2.2 Extensions

We have also considered a number of extensions of the simulations reported

so far and present further detailed results in the Supplement to this article.

In Tables S1 and S2 of the Supplement we explore the impact of the location

of the volatility shift within the sample. More precisely, we compare results

based on DGP1 with break fractions τ = 0.5 and 0.2. In other words, we
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investigate the implication of the volatility change happening closer to the

beginning of the sample. The results for both Gaussian and t distributed

processes are very similar for τ = 0.5 and τ = 0.2. Thus, even if the break

point is not in the middle of the sample this seems to have no substantial

impact on the small sample properties of our tests. Note that in this case we

have always fitted processes with correctly specified break dates.

In Table S3 of the Supplement, the properties for two Gaussian VAR(1)

processes with different persistence are compared. One of the processes has

an autoregressive root much closer to the unit circle than the other process.

Again this does not affect the small sample properties of our tests much.

Finally, in Table S4 of the Supplement results for a 5-dimensional Gaus-

sian VAR(1) process are presented which indicate that the tests tend to reject

too often under the null hypothesis for larger models. This, of course, is in

line with our previous finding in Table 3. The magnitude of the distortions

is quite substantial for such a large model and even for sample size T = 500

there is still some bias. We have not found satisfactory small sample correc-

tions for our tests in large models and leave the issue for future research.

4.3 Sequential Testing

So far we have explored the properties of our tests when they are applied

to a single null hypothesis. However, in practice it is tempting to use them

sequentially for higher-dimensional processes, as discussed in Section 3.2.

Although we emphasize that our asymptotic results do not relate to this

situation, we have also considered the possibility to apply the tests sequen-

tially in a simulation exercise. To this end, we have generated the following

3-dimensional Gaussian VAR(0) process.

DGP3 3-dimensional (K = 3) Gaussian VAR(0) process yt = ut, with

volatility change at T1 = 0.5T , i.e., τ = 0.5. The errors ut ∼ N (0,Σ1 =

I3) for t = 1, . . . , τT1 and ut ∼ N (0,Σ2 = diag(λ1, λ2, λ3)) for t =

T1 + 1, . . . , T , where (λ1, λ2, λ3) = (2, 2, 2), (3, 2, 1) and (3, 2, 2).

Simulation results for this case are provided in Table 4. In that table the
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Table 4: Relative Rejection Frequencies of Tests for 3-dimensional Gaussian
VAR(0) DGP (Nominal Individual Significance Level 5%)

T (λ1, λ2, λ3) Hypotheses Qr(0, 0) Qr(κ̃1, κ̃2)

100 (2, 2, 2) H01 : λ1 = λ2 = λ3 0.073 0.081
(size) H01 and H02|¬H01 : λ1 = λ2 0.020 0.022

H01 and H03|¬H01 : λ2 = λ3 0.008 0.012
H01 and H02|¬H01 and H03|¬H01 0.001 0

(3, 2, 1) H01 : λ1 = λ2 = λ3 0.548 0.570
(power) H01 and H02|¬H01 : λ1 = λ2 0.114 0.128

H01 and H03|¬H01 : λ2 = λ3 0.226 0.240
H01 and H02|¬H01 and H03|¬H01 0.008 0.013

(3, 2, 2) H01 : λ1 = λ2 = λ3 0.146 0.153
(power) H01 and H02|¬H01 : λ1 = λ2 0.035 0.043

H01 and H03|¬H01 : λ2 = λ3 0.026 0.027
H01 and H02|¬H01 and H03|¬H01 0 0

250 (2, 2, 2) H01 : λ1 = λ2 = λ3 0.056 0.053
(size) H01 and H02|¬H01 : λ1 = λ2 0.019 0.018

H01 and H03|¬H01 : λ2 = λ3 0.010 0.009
H01 and H02|¬H01 and H03|¬H01 0 0

(3, 2, 1) H01 : λ1 = λ2 = λ3 0.934 0.936
(power) H01 and H02|¬H01 : λ1 = λ2 0.270 0.272

H01 and H03|¬H01 : λ2 = λ3 0.612 0.616
H01 and H02|¬H01 and H03|¬H01 0.112 0.110

(3, 2, 2) H01 : λ1 = λ2 = λ3 0.252 0.264
(power) H01 and H02|¬H01 : λ1 = λ2 0.103 0.106

H01 and H03|¬H01 : λ2 = λ3 0.031 0.031
H01 and H02|¬H01 and H03|¬H01 0 0

500 (2, 2, 2) H01 : λ1 = λ2 = λ3 0.055 0.054
(size) H01 and H02|¬H01 : λ1 = λ2 0.018 0.017

H01 and H03|¬H01 : λ2 = λ3 0.009 0.010
H01 and H02|¬H01 and H03|¬H01 0 0

(3, 2, 1) H01 : λ1 = λ2 = λ3 1 1
(power) H01 and H02|¬H01 : λ1 = λ2 0.509 0.515

H01 and H03|¬H01 : λ2 = λ3 0.932 0.929
H01 and H02|¬H01 and H03|¬H01 0.480 0.451

(3, 2, 2) H01 : λ1 = λ2 = λ3 0.530 0.527
(power) H01 and H02|¬H01 : λ1 = λ2 0.309 0.305

H01 and H03|¬H01 : λ2 = λ3 0.036 0.038
H01 and H02|¬H01 and H03|¬H01 0.004 0.004

Note: The notation H0i|¬H0j means that the null hypothesis H0i is tested condi-
tionally on H0j being rejected.
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notation H0i|¬H0j means that the null hypothesis H0i is tested conditionally

on H0j being rejected. Thus, for example, H02|¬H01 : λ1 = λ2 means that

the null hypothesis H02 : λ1 = λ2 is only tested for those simulations in which

H01 : λ1 = λ2 = λ3 has been rejected.

The results for T = 100 and (λ1, λ2, λ3) = (2, 2, 2) confirm that the

test is slightly oversized for larger models. It rejects the true hypothesis

H01 : λ1 = λ2 = λ3 in roughly 8% of the cases if Q3(κ̃1, κ̃2) is used with

a nominal significance level of 5%. All other tests in the same panel are

conditional on this outcome and, not surprisingly, false conclusions regarding

the identification of the process are rare. In particular, the false conclusion

that the process is fully identified via heteroskedasticity is never reached

when Qr(κ̃1, κ̃2) is used. As one would expect the same is true if the sample

size is increased and (λ1, λ2, λ3) = (2, 2, 2).

However, in the panels for (λ1, λ2, λ3) = (3, 2, 1), a full identification is

also found rarely if T = 100, although the model is clearly identified. More

precisely, Qr(κ̃1, κ̃2) finds full identification only in 1.3% of the cases for T =

100. Fortunately, the relative frequency goes up to 45.1% for T = 500. Of

course, even that means that full identification is not found in more than half

of the cases. In other words, the tests do have some power in the sequential

procedure, but it is rather small even for larger samples. Note, however, that

some identifying information through heteroskedasticity is always found in

this case because, for T = 500 and (λ1, λ2, λ3) = (3, 2, 1), the false null

hypothesis H01 : λ1 = λ2 = λ3 is always rejected.

It is perhaps also of interest to consider the case (λ1, λ2, λ3) = (3, 2, 2)

which corresponds to a partially identified model. In this case it is in fact

rather unlikely that full identification will be diagnosed even in small samples.

In other words, even for T = 100 the three hypotheses H01, H02|¬H01, and

H03|¬H01 are never rejected jointly. Also the true conditional null hypoth-

esis H03|¬H01 alone is not rejected very often. More precisely, the relative

rejection frequency in the testing sequence of Qr(κ̃1, κ̃2) for T = 100 is 0.027.

In fact, this rejection frequency increases when the sample size increases be-

cause the false null hypothesis H01 : λ1 = λ2 = λ3 is rejected more often when
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the sample size increases. Thus, the actual rejection frequency for H03|¬H01

moves closer to the nominal 5%. On the other hand, the rejection frequency

of the false null hypothesis H02|¬H01 : λ1 = λ2 is also not rejected very often

for sample size T = 250. For this case, the relative rejection frequency of

Q2(κ̃1, κ̃2) is 0.106.

The overall conclusion for the sequential testing procedure is that for

our still relatively small 3-dimensional example process the test is valuable

but one needs to be careful drawing conclusions regarding full and partial

identification of the underlying model because the overall procedure is obvi-

ously less powerful than the individual tests and it is generally more prone

to error. Given the results for the individual tests, one may speculate that

it becomes even more difficult to reach correct conclusions if the process is

larger (higher-dimensional or larger lag order).

5 Empirical Examples

We present two empirical examples to illustrate the use of our tests for iden-

tification. The first one reconsiders a bivariate model for US data originally

proposed by Blanchard and Quah (1989) and the second one has been used

to analyze the interaction between US monetary policy and the stock market.

5.1 Blanchard-Quah Model

Blanchard and Quah (1989) identify demand and supply shocks in a bivariate

macro model for US economic growth and unemployment by assuming that

the demand shocks have no lung-run effects on output. Their model has be-

come a textbook example for identification by restrictions on the long-run ef-

fects of the structural shocks (see, e.g., Breitung, Brüggemann and Lütkepohl

(2004), Lütkepohl (2005, Chapter 9), Kilian and Lütkepohl (2017, Chapter

10)). Chen and Netšunajev (2016) use seasonally adjusted quarterly data

for the period 1970q1 - 2007q4 and use identification through heteroskedas-

ticity to investigate the validity of the long-run neutrality of demand shocks

in a VAR(2) model for yt = (∆gnpt, Ut), where gnpt denotes the log of
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Table 5: Estimated Relative Variances of Blanchard-Quah Model

Relative variance Estimate Standard deviation
λ1 0.457 0.154
λ2 0.152 0.041

Table 6: Identification Test for Blanchard-Quah Model

H0 Q2(κ̃1, κ̃2) degrees of freedom p-value
λ1 = λ2 8.600 2 0.014

GNP and Ut is the unemployment rate. They model volatility changes by a

smooth transition in the reduced form error covariance matrices. Their esti-

mated change in the variances turns out to be a decline in the error variances

around 1983q1 which is roughly the time where the Great Moderation starts

in the US (see also Figure 1 of Chen and Netšunajev (2016)). Therefore it is

plausible to use the VAR model (1) with a change in the residual covariance

matrix in period 1983q1.

We have used the data from Chen and Netšunajev (2016) and estimated

a VAR(2) model with error covariance change as in expression (3) with T1 =

1982q4. Since we have a sample size of T = 152, the corresponding sample

fraction of the break is τ = 0.34. The estimated relative variances (λi’s)

together with estimated standard errors are presented in Table 5. Both λ̃1

and λ̃2 are smaller than one so that the second part of the sample clearly is

associated with lower residual volatility.

The estimated λi’s are clearly distinct and, based on the standard errors

in Table 5, one may expect that they are significantly different. This infor-

mal evidence is in fact used by Chen and Netšunajev (2016) to justify the

assumption of distinct relative variances. Using our test statistic Q2(κ̃1, κ̃2),

we can now formally test the null hypothesis H0 : λ1 = λ2. The associated

p-value is given in Table 6. It is clearly smaller than 5% so that H0 is rejected

at a common level of significance. Thereby we support the assumption un-

derlying the analysis of Chen and Netšunajev (2016). Note that we use the

test statistic with estimated kurtosis parameters to avoid the assumption of

a Gaussian error distribution.
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5.2 A US Monetary Macro Model

Our second example is based on a benchmark study by Bjørnland and Leit-

emo (2009) who investigate the interaction between US monetary policy and

the stock market using a structural VAR analysis. The relation between

US monetary policy and the stock market has been investigated in a num-

ber of other articles as well (e.g., Park and Ratti (2000), Cheng and Jin

(2013)). Bjørnland and Leitemo consider a five-dimensional system of vari-

ables, yt = (qt, πt, ct,∆spt, rt)
′, where qt is the linearly detrended log of an

industrial production index, πt denotes the annual change in the log of con-

sumer prices (CPI index), ct is the annual change in the log of the World

Bank (non energy) commodity price index, spt is the log of the real S&P500

stock price index deflated by the consumer price index to measure the real

stock prices, ∆spt are the corresponding returns, and rt denotes the Federal

Funds rate.

Bjørnland and Leitemo (2009) identify monetary policy and stock mar-

ket shocks by zero restrictions on the impact effects and the long-run effects.

These restrictions are controversial and have been questioned by other au-

thors. Notably, Lütkepohl and Netšunajev (2017a, 2017b) consider identifi-

cation through heteroskedasticity to investigate the validity of the Bjørnland-

Leitemo identifying assumptions.

Lütkepohl and Netšunajev (2017a, 2017b) use monthly US data for the

period 1970m1 - 2007m6 and more sophisticated volatility models than our

simple shift in the covariance matrices. However, the smooth transition mod-

els used by Lütkepohl and Netšunajev (2017b) indicate that considering a

VAR model such as (1) with error covariances (3) and a shift date in 1984 may

provide a reasonable approximation (see in particular Figure 1a of Lütkepohl

and Netšunajev (2017b)). Therefore we use their data and fit a VAR(3)

model with a shift in the error covariance matrix after time T1 = 1983m4

which again roughly corresponds to splitting the data at the time when the

Great Moderation started. The total sample size in this case is T = 450 and,

hence, the fraction of the first volatility regime is τ = 0.37.

The estimated relative variances together with estimated standard errors
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Table 7: Estimated Relative Variances of US Monetary Macro Model

Relative variance Estimate Standard deviation
λ1 0.939 0.155
λ2 0.873 0.152
λ3 0.577 0.089
λ4 0.318 0.052
λ5 0.054 0.005

Table 8: Identification Tests for US Monetary Macro Model

H0 Qr(κ̃1, κ̃2) degrees of freedom p-value
λ1 = λ2 = λ3 = λ4 = λ5 75.328 14 2.060e−10
λ1 = λ2 = λ3 = λ4 13.565 9 0.138
λ2 = λ3 = λ4 = λ5 65.565 9 1.120e−10
λ1 = λ2 = λ3 2.671 5 0.751
λ2 = λ3 = λ4 9.997 5 0.075
λ3 = λ4 = λ5 47.474 5 4.548e−9
λ1 = λ2 0.054 2 0.973
λ2 = λ3 1.737 2 0.420
λ3 = λ4 3.565 2 0.168
λ4 = λ5 28.654 2 5.995e−7

are shown in Table 7. Again the second volatility regime is associated with

lower volatility because all relative variances are smaller than one. However,

given the large estimated standard errors of some of the relative variances,

it is clearly not obvious from Table 7 that the λi’s are all distinct, although

one may expect that some of the differences may be statistically significant.

To investigate the statistical significance of differences in the λi’s for-

mally we use again our tests with estimated kurtosis parameters. Since our

set of variables includes a stock market index, an assumption of Gaussian

model errors may be questionable and, hence, it is reasonable to allow for

distributions with more kurtosis. Some test results are presented in Table 8.

The null hypothesis that all five λi’s are identical is very strongly re-

jected at any conventional significance level. Thus, there is strong evidence

that there is some additional identifying information in the second moments

of the process. This result already suffices to indicate that there is further

identifying information that may enable the researcher to test the conven-

tional restrictions imposed by Bjørnland and Leitemo (2009). Of course,

25



it may also be of interest to continue with a more detailed analysis which

of the shocks are identified by heteroskedasticity. Therefore it is impor-

tant to note that, if the five λi are not all equal, we can also test that the

first four or last four relative variances are identical. The null hypothesis

H0 : λ1 = λ2 = λ3 = λ4 results in a p-value of 0.138 and, hence, at conven-

tional significance levels, it cannot be rejected. In contrast, the hypothesis

H0 : λ2 = λ3 = λ4 = λ5 is strongly rejected.

Given these results, we cannot be sure that the conditions for our tests

hold for null hypotheses H0 : λ1 = λ2 = λ3 and H0 : λ2 = λ3 = λ4. Recall

that Proposition 1 requires that λ4 is different from λ3 to test the former

hypothesis and λ1 is different from λ2 to test the latter hypothesis using the

asymptotic distribution given in the proposition. Thus, the corresponding p-

values in Table 8 may be unreliable. On the other hand, taking them at face

value, they are consistent with the first four λi’s being equal. In contrast,

our test of H0 : λ3 = λ4 = λ5 has a p-value smaller than 0.001 and hence the

hypothesis is strongly rejected. Note that this test is justified by Proposition

1 and the result is consistent with the previous tests.

Using the arguments of the previous paragraph, Proposition 1 only pro-

vides a basis to test the final null hypothesis in Table 8, H0 : λ4 = λ5. Also

this hypothesis is clearly rejected at any common significance level, thereby

providing support for λ5 being different from all other λi’s. On the other

hand, our tests do not support that λ1, λ2, λ3 and λ4 are different. Thus,

strictly speaking, our test supports only identification of the last shock. Since

the last shock does not have an economic label, only a more detailed analysis

of the properties of the shock and its impulse responses can disclose which

economic shock is behind the fifth shock in our statistical model. In principle

it is of course no problem if the shocks are only partially identified. In fact,

in many studies, researchers have only been interested in one or two shocks

in a larger set of possible shocks. For example, they may just be interested

in the effects of monetary policy shocks. If a single shock is identified, also

the corresponding impulse responses etc. are identified and can be estimated

and evaluated.
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It may be worth noting that Lütkepohl and Netšunajev (2017b) use their

model to test hypotheses regarding identifying zero restrictions on the im-

pact and long-run effects of the shocks which are not overidentifying in a

conventional structural VAR model and, hence, would not be testable with-

out additional identifying information. Such tests become feasible, of course,

if heteroskedasticity provides at least some identifying information. In fact,

Lütkepohl and Netšunajev (2017b) reject most of the restrictions of interest

in their study implying that heteroskedasticity apparently provides sufficient

information for the tests to have power. Our tests enable the researcher

to assess in more detail how much additional identifying information can

be expected from heteroskedasticity and ideally also which hypotheses can

reasonably be tested. Finally, we remind the reader that Lütkepohl and

Netšunajev (2017b) considered a different volatility model so that our results

strictly speaking do not apply to their model. Clearly, it would be of interest

to have identification tests similar to our new tests for more sophisticated

volatility models as well.

6 Conclusions

In this study we have developed frequentist tests for identification through

heteroskedasticity in structural vector autoregressive models. We consider

VAR models with two volatility states. The change point of the volatility

is assumed to be known. The tests are Wald type tests such that only the

unrestricted model has to be estimated. The model errors are assumed to be

from the class of elliptical distributions. This class of distributions includes

the Gaussian distribution as well as t and mixed normal distributions. We

propose test versions where the kurtosis of the distribution is assumed to be

known and also allow for the possibility that the kurtosis is estimated.

The asymptotic null distributions of the test statistics are derived and are

shown to be χ2 distributions although the models are not identified under

the null hypothesis. We have also explored the small sample properties of

the tests by Monte Carlo simulations and we have found that the tests are
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oversized for large models when the sample size is small. However, for larger

samples and smaller models, size and power of the tests is quite reasonable

and the properties of the tests do not depend on the timing of the volatility

break. However, misspecification of the volatility change point is found to

reduce power and underspecification of the lag order may lead to size and

power distortions. The small sample properties are very little affected by

estimating the kurtosis parameters. Thus, in practice we recommend to use

the test versions which are based on estimated kurtosis parameters.

Two empirical examples are considered to illustrate the usefulness of the

tests. The first example considers a bivariate model for US data. Our tests

support the assumption of earlier studies that the model is identified by het-

eroskedasticity. The second example is based on a five-dimensional model for

US data. It has been used to analyze the interaction between US monetary

policy and the stock market. We find that there is some identifying informa-

tion from heteroskedasticity but there is little support for a full identification.

There are a number of desirable extensions of our tests. First, it would

be useful if tests for more than two volatility regimes could be developed.

Moreover, the volatility model is very special. It assumes that the change

in volatility is extraneously generated. Other models have been used in the

literature on identification through heteroskedasticity. It is desirable to have

tests for identification also for other related models.

A Proof of Proposition 1

We assume that the ut have an elliptical distribution possessing a density

as well as finite fourth moments as in Proposition 1. Such assumptions are

needed because we are using limiting results for elliptical distributions from

Anderson (2003).

We study λ̃1, . . . , λ̃K , the eigenvalues of Σ̃−11 Σ̃2, and follow the pattern of

proof in Anderson (2003, Sections 13.6.1 and 13.6.2). As in Anderson (2003,

eqn. (9) on p. 550), for the theoretical developments that follow it will be
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convenient to transform the estimators Σ̃1 and Σ̃2 and consider the matrices

Ω̃1 = B−1Σ̃1B
′−1 and Ω̃2 = B−1Σ̃2B

′−1.

(As before, we here assume that the first nonzero element on each column

of B is positive.) With this transformation, the asymptotic distributions of

Ω̃1 and Ω̃2 below will depend only on Λ and not on B (note also that the

theoretical counterparts of Ω̃1 and Ω̃2 are B−1Σ1B
′−1 = IK and B−1Σ2B

′−1 =

Λ). Furthermore, as λ̃1, . . . , λ̃K are the eigenvalues of Σ̃−11 Σ̃2, they are also

the eigenvalues of Ω̃−11 Ω̃2 or, equivalently, the eigenvalues of Ω̃
−1/2
1 Ω̃2Ω̃

−1/2
1 .

Thus, as far as asymptotic properties of the eigenvalues λ̃1, . . . , λ̃K or their

functions are concerned, we can use the matrices Ω̃1 and Ω̃2 instead of Σ̃1

and Σ̃2.

From (12) and (13) it follows that the asymptotic distributions of Ω̃1 and

Ω̃2 can be derived by using the (independent) errors ut in place of the residuals

in the definitions of Σ̃1 and Σ̃2. For simplicity, denote T2 = T − T1 and note

that, due to the assumption T1 = [τT ] for some τ ∈ (0, 1), both T1 →∞ and

T2 → ∞ when T → ∞. From Theorem 3.6.2 in Anderson (2003, p. 102),

we can thus conclude that T
1/2
1 (Ω̃1 − IK) = Z̃1 and T

1/2
2 (Ω̃2 − Λ) = Z̃2, say,

converge jointly in distribution as T → ∞ to the matrices Z1 = [z1,ij] and

Z2 = [z2,ij] (i, j = 1, . . . , K). Here Z1 and Z2 are independent, their elements

are jointly normally distributed, and their functionally independent elements

are statistically independent. Furthermore, their elements have mean zero

and covariance structure given by

Cov[vec(Z1)] = (1 + κ1)(IK2 + K)(IK ⊗ IK) + κ1vec(IK)vec(IK)′

and

Cov[vec(Z2)] = (1 + κ2)(IK2 + K)(Λ⊗ Λ) + κ2vec(Λ)vec(Λ)′,

where K (K2 × K2) is a commutation matrix, ⊗ denotes the Kronecker

product and vec signifies the column stacking operator. The Gaussian case

is obtained as a special case by choosing κ1 = κ2 = 0. In what follows, the

null hypothesis is assumed to hold unless otherwise stated.
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As in Tyler (1983, p. 413, the paragraph following equations (1)), we can

describe the elements of Cov[vec(Z1)] as follows. The distinct off-diagonal

elements of Cov[vec(Z1)] are uncorrelated with each other and uncorrelated

with the diagonal elements, and each of them has variance 1 + κ1. All di-

agonal elements have variance 2 + 3κ1 and the covariance between any two

diagonal elements is κ1. In the special case where Λ = λ0IK the same de-

scription clearly applies to the elements of Cov[vec(Z2)] with κ1 replaced by

κ2, provided the variances and covariances are multiplied by λ20, and by the

definition of the commutation matrix the same is true when Z2 is replaced

by the matrix [z2,ij]
s+r
i,j=s+1 and Λ is replaced by Λ2 = λ0Ir.

Theorem 1 of Amemiya (1990) implies that T 1/2(λ̃s+1−λ0, . . . , λ̃s+r−λ0)
converges in distribution to an (r× 1) random vector consisting of the eigen-

values of the matrix U = [uij]
r
i,j=1 = [(1−τ)−1/2z2,ij−λ0τ−1/2z1,ij]s+ri,j=s+1. The

elements of U are jointly normally distributed with mean zero and covari-

ances given in the following equations where c(τ, κ1, κ2)
2 =

(
1+κ1
τ

+ 1+κ2
1−τ

)−1
and i, j = s+ 1, . . . , s+ r:

E[u2ij] =
(1 + κ2)λ

2
0

1− τ
+

(1 + κ1)λ
2
0

τ
= λ20c(τ, κ1, κ2)

−2 for i 6= j

E[u2ii] =
(2 + 3κ2)λ

2
0

1− τ
+

(2 + 3κ1)λ
2
0

τ

= 2λ20c(τ, κ1, κ2)
−2 + λ20

(
κ2

1− τ
+
κ1
τ

)
E[uiiujj] = λ20

(
κ2

1− τ
+
κ1
τ

)
for i 6= j.

Distinct off-diagonal elements of U are independent of each other and the

off-diagonal and diagonal elements of U are independent.

Now define the (infeasible) test statistic

Qr(κ1, κ2) = c(τ, κ1, κ2)
2

[
−T

s+r∑
k=s+1

log(λ̃k) + Tr log

(
1

r

s+r∑
k=s+1

λ̃k

)]
for which we have

Qr(κ1, κ2)
d→ c(τ, κ1, κ2)

2

λ20

∑
i<j

u2ij +
c(τ, κ1, κ2)

2

2λ20

 s+r∑
i=s+1

u2ii −
1

r

(
s+r∑
i=s+1

uii

)2


def
= Q∗1,r(κ1, κ2) +Q∗2,r(κ1, κ2).
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Here Q∗1,r(κ1, κ2) and Q∗2,r(κ1, κ2) are independent and Q∗1,r(κ1, κ2) has a χ2

distribution with 1
2
r(r − 1) degrees of freedom. As to Q∗2,r(κ1, κ2), defining

ws as

ws =
c(τ, κ1, κ2)√

2λ0
(us+1,s+1, . . . , us+r,s+r)

′,

and the (r×r) projection matrix Pr as Pr = Ir− 1
r
1r1

′
r, where 1r = (1, . . . , 1)′

is an (r × 1) vector, we have

Q∗2,r(κ1, κ2) = w′sPrws.

Hence, it follows that the random vector ws is normally distributed with zero

mean and covariance matrix (see the above expressions of E[u2ii] and E[uiiujj]

(i 6= j))

Cov[ws] = Ir +
c(τ, κ1, κ2)

2

2

(
κ2

1− τ
+
κ1
τ

)
Ir

+
c(τ, κ1, κ2)

2

2

(
κ2

1− τ
+
κ1
τ

)
(1r1

′
r − Ir)

= Ir +
c(τ, κ1, κ2)

2

2

(
κ2

1− τ
+
κ1
τ

)
1r1

′
r.

Thus, we have PrCov[ws] = Pr and we find that Q∗2,r(κ1, κ2) has a χ2 dis-

tribution with r − 1 degrees of freedom. This fact can be justified by a

well-known result of quadratic forms of normal random vectors (see, e.g.,

result (vii) in Rao (1973, p. 188)).

From the preceding discussion we can now conclude that Qr(κ1, κ2)
d→

Q∗1,r(κ1, κ2) + Q∗2,r(κ1, κ2), where Q∗1,r(κ1, κ2) and Q∗2,r(κ1, κ2) are indepen-

dent and have χ2 distributions with degrees of freedom 1
2
r(r − 1) and r − 1.

Therefore, the infeasible test statistic Qr(κ1, κ2) has an asymptotic χ2 dis-

tribution with 1
2
(r + 2)(r − 1) degrees of freedom, and the same is true for

its feasible version Qr(κ̃1, κ̃2), where κ̃1 and κ̃2 are consistent estimators of

κ1 and κ2, respectively. This proves Proposition 1.
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